
UDP: Utility-Driven Fetch Directed
Instruction Prefetching

Presented in ISCA 2024

Surim Oh*, Mingsheng Xu*, Tanvir Ahmed Khan**, Baris Kasikci***, Heiner Litz*

*University of California Santa Cruz
**Columbia University

***University of Washington

1

The large instruction footprint responsible for a quarter of pipeline stalls!

CPU Performance of Google Web Search
1) Processors in Google's fleet spend almost a
quarter of their cycles due to frontend stalls.

2) Instruction footprint >>>> Instruction cache
[G. Ayers et al. 2019]

2

Frontend
stalls

How many stalls
spent in each part?

Good

issued

Write Back

MemoryExecuteInst. DecodeInst. Fetch

Instruction
Memory

Register
File

Data
MemoryALU

PC

Frontend Backend

retired

Decoupled frontend

prefetch engine

(FDIP)
instruction

fetch

cache probe

branch

history

branch

dir. pred

branch target

buffer (BTB)

return

stack

indirect

pred

L1

Icache

branch predictor

FTQ

branch outcome target

predicted

branch

target

d

e
c
o

d
e

LLC

e

x
e
cdemand

load
L1 miss

correct target

Zoom into Today's Frontend
Write Back

MemoryExecuteInst. DecodeInst. Fetch

Instruction
Memory

Register
Fi le

Data
MemoryALU

PC

Frontend Backend

FDIP (Fetch-Directed
Instruction Prefetching)
a hardware prefetching

technique leveraging the
branch predictor to

prefetch instructions

3

tailtailtail

miss

head

tailtail

Off-path prefetches

On-path prefetches

Issuing off-path
prefetches on a BTB miss

Icache pollution
with unuseful cache lines

Frontend
stalls

headhead

On-path inst fetch blocks
Off-path inst fetch blocks

FDIP Falls Short of a Perfect Instruction Cache

b
e
tt

e
r

Large code
footprint

4

Many branches
exceeding the BTB size

BTB misses Limit the accuracy of FDIP

Ideal icache’s speedup over today’s FDIP

Related Work and Our Goal

Frontend Stalls

H
W

 C
o

m
p

le
xi

ty
o

r
C

o
st

Confluence
(MICRO15)

Boomerang
(HPCA17)

Shotgun
(ASPLOS18)

SN4L+Dis+BTB
(ISCA20)

Re-establishing FDP
(ISPASS21)

Our Goal

better

5

PDIP
(ASPLOS24)

Research Problems

• Why does FDIP fail to eliminate frontend stalls?

• How can we leverage insights to reduce frontend stalls?

A detailed analysis of the state-of-the-art FDIP

UFTQ: Dynamically adapts the FTQ size

UDP: Prefetches only useful instructions

6

Introduction

•Optimizing
data center
applications

Analysis

• Why FDIP falls
short of the
ideal?

UFTQ

•Dynamically
adapting FTQ
size

UDP

•Utility-Driven
Prefetching

Conclusion

•Utility study reduces
cache pollution and
improves timeliness.

Future
Works

7

Workload Study

• 10 Data center applications

MySQL, PostgreSQL:
sysbench OLTP-like database benchmark

Clang, GCC:
Building SPEC CPU 2017

Verilog simulator
Gradient Boosting Library

8

mongo-perf benchmark

HHVM OSS-perf benchmark

• Application-specific 10M instruction simpoints

• Aggregated simpoints based on their weights

• Warmed up with 10M instructions

Simulation Environment

• Open-source, cycle-accurate Scarab simulator

Hardware Parameter Value

CPU Sunny-Cove-like

Frontend width and retirement 6-way

Functional Units 4 ALU, 2 Load, 2 Store

Branch Predictor TAGE-SC-L

Branch Target Buffer (BTB) 8K entries

Instruction Prefetcher FDIP

Data Prefetcher Stream

L1 instruction cache 32 KiB, 8-way, 3 cycles

L1 data cache 48 KiB, 12-way, 4 cycles

L2 unified cache 512 KiB, 8-way, 13 cycles

LLC unified cache Shared 2MiB/core, 16-way,
36 cycles

Decoupled Frontend
Parameter

Value

FTQ blocks per cycle 2

FTQ block size 32 Bytes

9

Analysis: Optimal Run-ahead Distance (FTQ depth)

Large FTQ depth:
• Improves prefetch timeliness
• Increases off-path prefetches

b
e
tt

e
r

10

FTQ

FDIP runs at most
4 cycles ahead

7 cycles ahead

More timely prefetches

More off-path prefetches

Analysis: Timeliness, Off-path vs. On-path, Usefulness

Applications require different FTQ
depth to achieve timeliness

m
o
re

 t
im

e
ly

 p
re

fe
tc

h
e
s

11

MSHR: Miss Status Hold Registers
(outstanding fetches not loaded into icache yet)

More off-path prefetches with
larger FTQ depth

90% : off-path prefetches

10% : useful prefetches
90% : unuseful prefetches

65% : useful prefetches
35% : unuseful prefetches

Limiting off-path prefetches through
bandwidth throttling and FTQ depth

is insufficient.

Analysis: Usefulness of Off-path Prefetches

Line 3 is a useful off-path candidate after a merge point.

Off-path prefetches are

12

Very Useful Somewhat useful/harmful Harmful

clang

Introduction

•Optimizing
data center
applications

Analysis

•Why FDIP falls
short of the
ideal?

UFTQ

• Dynamically
adapting FTQ
size

UDP

•Utility-Driven
Prefetching

Conclusion

•Utility study reduces
cache pollution and
improves timeliness.

Future
Works

13

No one-size-fits-all FTQ ?

UFTQ : Application-specific FTQ Size

• UFTQ-AUR: find Queue Depth satisfying AUR (QDAUR)
and adjust FTQ size

• UFTQ-ATR: find Queue Depth satisfying ATR (QDATR)
and adjust FTQ size

• UFTQ-ATR-AUR: find QDAUR then QDATR

Application Optimal FTQ

mysql 56

postgres 76

clang 54

gcc 60

drupal 28

verilator 84

mongodb 38

tomcat 24

xgboost 12

mediawiki 18

Average (Geomean) 42

14

Utility

0.77

0.85

0.79

0.72

0.64

0.64

0.69

0.69

0.30

0.62

0.65

Correlation Coefficient - 0.63 0.21

Timeliness

0.93

0.96

0.95

0.93

0.85

0.46

0.85

0.82

0.31

0.83

0.75

No one-size-fits-all FTQ

Dynamically adjusting the FTQ size for a given workload

1) start from Average FTQ (39)
2) measure Utility Ratio of the next 1000 prefetches
3) if Utility Ratio < AUR, reduce FTQ size

by leveraging utility ratio and timeliness ratio

• Trained on 80% of randomly selected simpoints

• Evaluated on non-trained 20% of simpoints

UFTQ: AUR-ATR (FTQ size based on Utility & Timeliness)

• Measure utility & timeliness with

 four 10-bit counters
 two 32-bit fixed point registers (ratios)

• Adapt FTQ size dynamically

15

FDIP

branch
predictor

FTQ tail

head

UFTQ reg.

instruction
fetch

L1
I-cache

prefetch

UFTQ : Evaluation - Speedup

UFTQ-ATR-AUR only prevents either inaccurate or untimely prefetches.

16

4.9% (up to 37.2%)

IPC speedup

1.2% (up to 28%)

Icache miss reduction

Introduction

•Optimizing
data center
applications

Analysis

•Why FDIP falls
short of the
ideal?

UFTQ

•Dynamically
adapting FTQ
size

UDP

• Utility-Driven
Prefetching

Conclusion

•Utility study reduces
cache pollution and
improves timeliness.

Future
Works

17

Reached an optimal FTQ, however, still have unuseful prefetches polluting icache.
→ Can we filter out unuseful prefetches and improve timeliness of useful prefetches even more?

UDP : Utility-Driven Instruction Prefetch

• Learn usefulness of each prefetch candidate

• Predict if FDIP is on or off-path based on branch confidence

• On-path: Always prefetch

• Off-path: No prefetch unless address is in bloom filter

18

hold candidates

until consumed

UDP cache
Useful?

Seniority-FTQ

insert a useful

candidate

retired CL

prefetch

FDIP

branch
predictor

FTQ

tail head

instruction
fetch

L1
I-cache

Seniority FTQ

smaller than reorder buffer (ROB)

UDP cache (useful-set)

8KB Bloom Filter:
1-block/2-block/4-block filters

Filter Management:
Clear the filter when full and the
unuseful ratio reaches 75%

UDP : Evaluation - Speedup

UDP provides substantial performance gains of up to 16.1% for xgboost and 3.6% on average.

19

UDP : Evaluation – Icache Misses & Inst lost due to misses

20

MPKI: Misses Per Kilo Instructions

Introduction

•Optimizing
data center
applications

Analysis

•Why FDIP falls
short of the
ideal?

UFTQ

•Dynamically
adapting FTQ
size

UDP

• Utility-Driven
Prefetching

Conclusion

• Utility study reduces
cache pollution and
improves timeliness.

Future
Works

21

Contribution

FDIP fails to eliminate all icache misses

Quantify the effect of untimely prefetches & inaccurate off-path prefetches

UFTQ, dynamically adapt the prefetch aggressiveness of FDIP

UDP, only prefetch useful prefetches

22

Introduction

•Optimizing
data center
applications

Analysis

•Why FDIP falls
short of the
ideal?

UFTQ

•Dynamically
adapting FTQ
size

UDP

• Utility-Driven
Prefetching

Conclusion

•Utility study reduces
cache pollution and
improves timeliness.

Future
Works

23

Analysis: FDIP Recovery Frequency

Recoveries act as a natural throttling
condition for FDIP.

FDIP cannot run ahead (fully exploit FTQ)
due to BTB misses and BP mispredictions.

24

tail

head

Flush FTQ on a branch resolution
(recovery)

for a mispredicted branch

tailhead

mispredicted
branch

FTQ
Occupancy

Merge Point Study

• How to increase the run-ahead distance even with frequent recoveries?

On a recovery, can FTQ not be flushed?

tail

head2

head

instruction

fetch

cache probe

prefetch engine

L1 I-

cache

FTQ

branch outcome target

d

e

c

o

d

e

LLC

e

x

e

cdemand
load

L1 miss

correct target

head tailhead2

25

Please check out our resources!

26

• Resources
• Scarab + Decoupled frontend: https://github.com/Litz-Lab/scarab

• Scarab Infrastructure: https://github.com/Litz-Lab/Scarab-infra
- Dockerfiles for data center workloads ready to run with DynamoRIO (collecting traces) and
Scarab simulation

• Email: soh31@ucsc.edu

Questions

https://github.com/Litz-Lab/scarab
https://github.com/Litz-Lab/Scarab-infra

	Slide 1: UDP: Utility-Driven Fetch Directed Instruction Prefetching
	Slide 2: The large instruction footprint responsible for a quarter of pipeline stalls!
	Slide 3: Zoom into Today's Frontend
	Slide 4: FDIP Falls Short of a Perfect Instruction Cache
	Slide 5: Related Work and Our Goal
	Slide 6: Research Problems
	Slide 7
	Slide 8: Workload Study
	Slide 9: Simulation Environment
	Slide 10: Analysis: Optimal Run-ahead Distance (FTQ depth)
	Slide 11: Analysis: Timeliness, Off-path vs. On-path, Usefulness
	Slide 12: Analysis: Usefulness of Off-path Prefetches
	Slide 13
	Slide 14: UFTQ : Application-specific FTQ Size
	Slide 15: UFTQ: AUR-ATR (FTQ size based on Utility & Timeliness)
	Slide 16: UFTQ : Evaluation - Speedup
	Slide 17
	Slide 18: UDP : Utility-Driven Instruction Prefetch
	Slide 19: UDP : Evaluation - Speedup
	Slide 20: UDP : Evaluation – Icache Misses & Inst lost due to misses
	Slide 21
	Slide 22: Contribution
	Slide 23
	Slide 24: Analysis: FDIP Recovery Frequency
	Slide 25: Merge Point Study
	Slide 26: Please check out our resources!

