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The large instruction footprint responsible for a quarter of pipeline stalls!

CPU Performance of Google Web Search
1) Processors in Google's fleet spend almost a 
quarter of their cycles due to frontend stalls.

2) Instruction footprint  >>>>  Instruction cache
[G. Ayers et al. 2019]
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FDIP Falls Short of a Perfect Instruction Cache
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Many branches 
exceeding the BTB size

BTB misses Limit the accuracy of FDIP

Ideal icache’s speedup over today’s FDIP



Related Work and Our Goal
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Research Problems

• Why does FDIP fail to eliminate frontend stalls?

• How can we leverage insights to reduce frontend stalls?

A detailed analysis of the state-of-the-art FDIP

UFTQ: Dynamically adapts the FTQ size

UDP: Prefetches only useful instructions

6



Introduction

•Optimizing 
data center 
applications

Analysis

• Why FDIP falls 
short of the 
ideal?

UFTQ

•Dynamically 
adapting FTQ 
size

UDP

•Utility-Driven 
Prefetching

Conclusion

•Utility study reduces 
cache pollution and 
improves timeliness.

Future 
Works
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Workload Study

• 10 Data center applications

MySQL, PostgreSQL:
sysbench OLTP-like database benchmark

Clang, GCC:
Building SPEC CPU 2017

Verilog simulator
Gradient Boosting Library
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mongo-perf benchmark

HHVM OSS-perf benchmark

• Application-specific 10M instruction simpoints

• Aggregated simpoints based on their weights

• Warmed up with 10M instructions



Simulation Environment

• Open-source, cycle-accurate Scarab simulator

Hardware Parameter Value

CPU Sunny-Cove-like

Frontend width and retirement 6-way

Functional Units 4 ALU, 2 Load, 2 Store

Branch Predictor TAGE-SC-L

Branch Target Buffer (BTB) 8K entries

Instruction Prefetcher FDIP

Data Prefetcher Stream

L1 instruction cache 32 KiB, 8-way, 3 cycles

L1 data cache 48 KiB, 12-way, 4 cycles

L2 unified cache 512 KiB, 8-way, 13 cycles

LLC unified cache Shared 2MiB/core, 16-way,
36 cycles

Decoupled Frontend 
Parameter

Value

FTQ blocks per cycle 2

FTQ block size 32 Bytes
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Analysis: Optimal Run-ahead Distance (FTQ depth)

Large FTQ depth:
• Improves prefetch timeliness
• Increases off-path prefetches
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Analysis: Timeliness, Off-path vs. On-path, Usefulness

Applications require different FTQ 
depth to achieve timeliness
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MSHR: Miss Status Hold Registers
(outstanding fetches not loaded into icache yet)

More off-path prefetches with 
larger FTQ depth

90% : off-path prefetches

10% : useful prefetches
90% : unuseful prefetches

65% : useful prefetches
35% : unuseful prefetches

Limiting off-path prefetches through 
bandwidth throttling and FTQ depth 

is insufficient.



Analysis: Usefulness of Off-path Prefetches

Line 3 is a useful off-path candidate after a merge point.

Off-path prefetches are
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No one-size-fits-all FTQ ?



UFTQ : Application-specific FTQ Size

• UFTQ-AUR: find Queue Depth satisfying AUR (QDAUR) 
and adjust FTQ size

• UFTQ-ATR: find Queue Depth satisfying ATR (QDATR) 
and adjust FTQ size

• UFTQ-ATR-AUR: find QDAUR then QDATR

Application Optimal FTQ

mysql 56

postgres 76

clang 54

gcc 60

drupal 28

verilator 84

mongodb 38

tomcat 24

xgboost 12

mediawiki 18

Average (Geomean) 42
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Utility

0.77

0.85

0.79

0.72

0.64

0.64

0.69

0.69

0.30

0.62

0.65

Correlation Coefficient - 0.63 0.21

Timeliness

0.93

0.96

0.95

0.93

0.85

0.46

0.85

0.82

0.31

0.83

0.75

No one-size-fits-all FTQ

Dynamically adjusting the FTQ size for a given workload

1) start from Average FTQ (39)
2) measure Utility Ratio of the next 1000 prefetches
3) if Utility Ratio < AUR, reduce FTQ size

by leveraging utility ratio and timeliness ratio

• Trained on 80% of randomly selected simpoints

• Evaluated on non-trained 20% of simpoints



UFTQ: AUR-ATR (FTQ size based on Utility & Timeliness)

• Measure utility & timeliness with

   four 10-bit counters
   two 32-bit fixed point registers (ratios)

• Adapt FTQ size dynamically
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UFTQ : Evaluation - Speedup

UFTQ-ATR-AUR only prevents either inaccurate or untimely prefetches.

16

4.9% (up to 37.2%)

IPC speedup

1.2% (up to 28%)

Icache miss reduction
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Reached an optimal FTQ, however, still have unuseful prefetches polluting icache.
→ Can we filter out unuseful prefetches and improve timeliness of useful prefetches even more?



UDP : Utility-Driven Instruction Prefetch

• Learn usefulness of each prefetch candidate

• Predict if FDIP is on or off-path based on branch confidence

• On-path: Always prefetch

• Off-path: No prefetch unless address is in bloom filter
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UDP : Evaluation - Speedup

UDP provides substantial performance gains of up to 16.1% for xgboost and 3.6% on average.
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UDP : Evaluation – Icache Misses & Inst lost due to misses
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MPKI: Misses Per Kilo Instructions
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Contribution

FDIP fails to eliminate all icache misses

Quantify the effect of untimely prefetches & inaccurate off-path prefetches

UFTQ, dynamically adapt the prefetch aggressiveness of FDIP

UDP, only prefetch useful prefetches
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Analysis: FDIP Recovery Frequency

Recoveries act as a natural throttling 
condition for FDIP.

FDIP cannot run ahead (fully exploit FTQ) 
due to BTB misses and BP mispredictions.
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Merge Point Study

• How to increase the run-ahead distance even with frequent recoveries?

On a recovery, can FTQ not be flushed?
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Please check out our resources!
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• Resources
• Scarab + Decoupled frontend: https://github.com/Litz-Lab/scarab

• Scarab Infrastructure: https://github.com/Litz-Lab/Scarab-infra 
- Dockerfiles for data center workloads ready to run with DynamoRIO (collecting traces) and 
Scarab simulation

• Email: soh31@ucsc.edu

Questions

https://github.com/Litz-Lab/scarab
https://github.com/Litz-Lab/Scarab-infra
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